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Abstract. Explanation of Grover’s algorithm and how it could be used to attack symmetric key
algorithms and hash functions.

1 Problem Introduction

Grover’s algorithm performs an unstructured search [15] on a wanted item x̄ in a scrambled dataset of size
|Σn| = N = 2n, where n is the number of qubits (introduced in section 2). This means that we have a set
of data that has no structure that will aid in finding that certain item x̄.
To locate that item, we use an oracle f :

f : Σn −→ {0, 1} : x 7−→

{
0 , x ̸= x̄

1 , x = x̄

where Σn is the ’alphabet’ containing all items.The best way to approach this question, without quantum
computing, is brute forcing. We will assume that the function f can be evaluated in constant time, O(1).
Hence, performing a brute force attack will result in a time complexity of O(N) = O(2n). Depending on the
size of the data, this is not very optimal. Grover’s algorithm will find the correct item, with probability 1

2 ,
in time complexity O(

√
N). This algorithm can be repeated to increase chances.

2 Introduction to Quantum Computing

This is a short explanation of the concepts and tools that are necessary in the algorithm or useful to
understand the mechanics.

Quantum computing uses quantum mechanics for computing/algorithmic problems. A classical computer
consists of bits, each able to represent either one or zero. This implies that, for example, in unstructured
search problems, as described in section 1, a brute-force attack will have to evaluate each option separately.
Note that brute forcing takes immense amounts of time and is an important characteristic of cryptographic
systems, see section 4.
This is where quantum computing is different from classical computers. We do not talk about bits any more,
but about qubits (quantum bits).

2.1 Qubits

Qubits are quantum states in superposition, represented by classical binary states |0⟩ and |1⟩ (’ket’ notation).
A superposition can be expressed as a linear combination of classical states:

|φ⟩ =
N∑
i=0

αi |i⟩

where αi are amplitudes, with |αi|2 the probability of observing that specific state |i⟩. For any quantum
state |φ⟩, the sum of the probabilities must equal 1:

∑N
i=0 |αi|2 = 1, by law of total probability. Unlike
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classical probabilistic computing, quantum amplitudes can be complex or negative. Like the famous thought
experiment of Schrödinger’s cat[14], we do not know in what state, dead or alive, the cat is unless we observe
it. When we observe a superposition, it is ’dropped’ into that classical state with a probability |αi|2. The
superposition is no more after being observed. More intuitive, a quantum state can be represented by a
vector. For example, |+⟩ := 1√

2
(|0⟩ + |1⟩), the superposition of one and zero with equal probability, can be

represented by vector:

|+⟩ =

[
1√
2
1√
2

]
∼ |0⟩
∼ |1⟩

The classical bit states |0⟩ and |1⟩ can then be represented by
[
1
0

]
and

[
0
1

]
respectively. Similarly, ⟨0| (note

the notation difference with |0⟩) is the transpose and is thus a row vector (called ’bra’). The ’bra’ and ’kets’,
read bra-kets, notation is now clearly derived from the inner product notation of a measure space.The qubits
will satisfy ⟨φ|φ⟩ = ⟨φ| · |φ⟩ = ||φ||2 = 1 (total law of probability). Vectors |0⟩ and |1⟩ are also orthogonal,
their inner product is zero, and thus orthonormal. Qubits can also be represented on the Bloch sphere [9].
This is a three-dimensional sphere of radius one, with |0⟩ and |1⟩ on the poles of the sphere. In a system of
multiple qubits, the classical states are represented by a tensor product, the kronecker product, of |0⟩ and
|1⟩. For example, with two qubits, the states are represented by

– |0⟩ ⊗ |0⟩ =: |00⟩
– |0⟩ ⊗ |1⟩ =: |01⟩
– |1⟩ ⊗ |0⟩ =: |10⟩
– |1⟩ ⊗ |1⟩ =: |11⟩

. Notation of |b1b2⟩ is equivalent with value b1 being observed in the first qubit, and b2 in the second,
b1,2 ∈ {0, 1}. Depending on the number of qubits n, we will be able to represent basic states zero to
N − 1 = 2n − 1 in a superposition.

2.2 Gates

Next to measuring, we can also apply operators on qubit systems. These operations are also representable
by matrices. They are also unitary, this means they preserve the norm, ||A |φ⟩ || = || |φ⟩ || = 1, which is
necessary by the total law of probability. We will use these operators, also called gates;

– Hadamard gate:

H2 =
1√
2

[
1 1
1 −1

]
H2k = H ⊗H2k−1 =

1√
2

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
This gate is great for initialisation. Apply |0⟩, for example, to this gate: H |0⟩ = 1√

2
[1, 1]T =: |+⟩. Now

both states are equally likely to be observed. This works the other way around as well, H |+⟩ = |0⟩. In
the general dimension case, this is a matrix containing only 1 and −1 with scalar: 1

2n/2 , with N = 2n[2].
An element in the Hadamard matrix looks like (HN )ij = 1√

2n
(−1)ī·j̄ , with ī · j̄ being the bitwise dot

product. Hadamard is also unitary, because H2 = IN with IN the identity matrix. Hadamard is its own
conjugate transpose, because of the symmetry in its definition and non-complex values. This results in
H∗H = In, with H∗ the conjugate transpose. This is equivalent with unitary[5].

– Rotation gate:

R4 =


eiθ1 0 0 0
0 eiθ2 0 0
0 0 eiθ3 0
0 0 0 eiθ4

 general case, (R2n)jk =

{
eiθj k = j

0 k ̸= j
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Here is i =
√
−1 the complex unit. This performs as expected, a rotation on the states. The rotation of

each state does not change the probabilities because |eiθ| = 1. For this reason, it is also unitary, ||Av|| = 1
if ||v|| = 1 [5].

3 The Algorithm

The essence of the algorithm is that it flips the sign of the sought after item using the oracle f , and than
does an inversion over the average[10], which will amplify the state linked with our wanted item x̄. And thus
making its probability to be measured higher.
1. Initialisation

Possibly using a Hadamard gate on an initial state like |0⟩. The result is distribution over the all states,
all with equal probability.

|I0⟩ = [
1√
N

, ...,
1√
N︸ ︷︷ ︸

N times

]

It is clear that from the amplitudes, all probabilities are 1
N and thus uniform. All states are equally likely

to be observed.

2. Oracle gate
We apply an operation, using the oracle, on our system that flips the sign of our sought after item x̄.
The operation is defined as follows:

Uf =



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · −1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · 1


like identity matrix IN with (Uf )kk = −1 for f(xk) = 1

This operation is equivalent with a rotation of π radians on the phase of the wanted item, because
eiπ = −1. This corresponds with the first plot of figure 1.

3. Grover Operation
This operation is what does the inversion about average. In other words, it flips all amplitudes over the
average value, while keeping the same average value. If µ is the average, then for some value x = µ − ϵ
you would get x∗ = µ+ ϵ. This is done by the following matrix:

D =


−1 + 2

N
2
N

2
N · · · 2

N
2
N −1 + 2

N
2
N · · · 2

N
2
N

2
N −1 + 2

N · · · 2
N

...
...

...
. . .

...
2
N

2
N

2
N · · · −1 + 2

N

 . in general: Dij =

{
2
N if i ̸= j,

−1 + 2
N if i = j.

. One can check that than D = HRH, for H the Hadamard matrix and R a rotation matrix:

R =


1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

 in general: Rij =


0 if i ̸= j,

1 if i = j and i = 0,

−1 if i = j and i ̸= 0.
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. The proof of D = HRH is provided in paper [10], where it just works out the general definition of the
matrices. The matrix D can also be described as the inversion about the average; D = −IN +2P , where
P is a projection matrix with some nice properties. The latter has all elements 1

N , (P )ij = 1
N , ∀i, j,

which implies that multiplication with a vector v results in a vector containing everywhere the average
of elements in v, Pv =

[∑N
i=1

1
N · vi , ...

]
.

The square of P , P 2 is again P , this results in D2 = (−I + 2P )2 = I − 4P + 4P 2 = IN . Because the
conjugate transpose of P is again itself, it is a N×N matrix with all elements the same non-complex value,
the matrix D is also unitary [5] and thus well-defined and keeps norm one by law of total probability.
To show the inversion about the average, take a random vector v. We will notate the average vector as
−→µ := Pv, with Pv’s elements all being the scalar average µ. For each element in v, we can write it as
a difference with the average µ; ∀vi ∈ v ,∃ϵi > 0 : vi = µ ± ϵi. We write ϵ as the vector containing all
those values ϵi. We have for multiplication with D = −IN + 2P :

Dv = −v + 2−→µ = (−−→µ ∓ ϵ) + 2−→µ = −→µ ∓ ϵ (1)

This clearly flips over the average. To see that the average remains the same, we can write it as follows:

µ =
1

N

N∑
i=1

vi =
1

N

N∑
i=1

(µ± ϵi) = µ+
1

N

N∑
i=1

ϵi

=⇒ 1

N

N∑
i=1

ϵi = 0

Changing the sign for the epsilon values thus does not change the value of µ. This operation is visible in
figure 1. Steps 2-3 are repeated, and then the system is measured.

Fig. 1: Images from the original paper [10]; Display of amplitudes, linked with probability. Before plot is after
sign flip, after displays the inversion about average, amplifying a given state

3.1 Time Complexity

We now see how this Grover operation amplifies a state from initialisation. This process, step 2 to 3, can be
repeated to make the amplitude even higher. This value keeps getting bigger, because when the amplitude
is made negative, notate −k1, its distance with the average µ is µ + k1. When flipping it, it thus becomes
that distance on the other side of the average, k2 = µ + k1 + µ. When repeated, this will thus grow bigger
and bigger. Here, the lower index indicates iterations. From k1 to

k2 = −(−k1) + 2µ > k1 (2)
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. That is, if the average stays positive. If we notate the amplitude of our wanted item x̄ as k and the amplitude
of the other N − 1 items as l, the average is µ(k, l) := l + k−l

N . And so µ(k, l) > 0 ⇔ l(N − 1) + k > 0. This
is in order in the beginning, because l > 0 and k > 0, assuming we have a database with bigger size than
one. After that, the values for k and l keep changing. More specific:

k
sign flip−−−−−→ −k

inv. over avg.−−−−−−−−→ −(−k) + 2µ(−k, l) l
inv. over avg.−−−−−−−−→ −l + 2µ(−k, l)

Knowing this and µ in terms of k and l, assuming N > 2 non-trivial, we can make the following observation
for iterations: [

ki
li

]
=

1

N

[
N − 2 2N − 2
−2 N − 2

] [
ki−1

li−1

]
(3)

As mentioned in section 1, we want a probability of 1
2 , and thus an amplitude of ki = 1√

2
. Hence, we will

only focus on the k part here

ki =
1

N
[(N − 2)ki−1 + (2N − 2)li−1]

⇒ ki − ki−1 = ∆k =
1

N
(−2ki−1 + (2N − 2)li−1)

Knowing the sum of probabilities must stay one, we can get an upper bound for the value of li−1.

(N − 1)l2i−1 + k2i−1 = 1 ⇐⇒ li−1 =

√
1− k2i−1

N − 1
>

1√
2N − 2

This last bound holds, assuming 0 < k < 1√
2
, otherwise we can stop iterating because we achieved the

threshold.

∆k =
1

N
(−2ki−1 + (2N − 2)li−1) >

1

N
(−2

1√
2
+
√
2N − 2)

∆k >
−
√
2 +

√
2N − 2

N
>

1

3
√
N

This last bound holds for N > 2. And thus, in a O( 3√
2

√
N) steps, we will have k > 1√

2
. In the origi-

nal paper[10], Grover takes a few more stops and shows that each iteration the value of k will grow with
∆k > 1

2
√
N

and thus comes to the conclusion of O(
√
N) steps.

There are variants of the algorithm with more than one matching solution. These will have different com-
plexity proof depending on when you know the number of possible solutions or not. When the number of
solutions is known, complexity reduces to is O(

√
N/t) [7][3]. If unknown, there is no real a priori knowledge

on the amount of iterations but is expected to be also O(
√

N/t) [13].

Note on the performance of Grover in reality: Grover’s original paper does not mention the implementa-
tion of the oracle or linking the data to a qubit system. This might be significant. Also, Grover is very
resource intensive, making Grover’s improvement on attacks not that significant [12][4].

3.2 Lower Bound

As stated in [10], no unstructered search algorithm surpasses O(
√
N). This because T steps can only consider

T 2 queries of the data [1]. If it takes less time than O(
√
N), it would not take into account all the data, and

thus the oracle output could then be altered without affecting the output. This is not possible.
We can conclude that exponentially large search problems still remain exponential with Grover’s algorithm,
but will be significantly smaller for bigger values of N . For NP problems, it will be significantly faster
compared to classical methods [15], but it does not achieve polynomial-time efficiency, unlike Shor’s algorithm
[5].
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4 Cryptographic Implications

4.1 Attacking AES

With Grover in our toolbox, we can take a try at improving a brute force attack on AES. With a given set of
random text pair {(P,C) |Enc(k∗, P ) = C}, plaintext and ciphertext, we can define a function f that will be
the oracle for the algorithm. We take r plain- and ciphertext couples to avoid getting spurious keys, wrong
keys but with same encryption for some plaintext. As described in [12][4], we want for 2 different keys, e.g.
the key we want k∗ and another, that the encryption is different with probability 1− 1

2rn . Resulting in

r > ⌈2k/n⌉ for k = keylength, n = block size

For AES-128 we take 3 pairs thus. The oracle will take as input a key in the key space, k ∈ K.

f : K −→ {0, 1} : k 7−→

{
1 E(k, P1) = C1 ∧ E(k, P2) = C2 ∧ E(k, P3) = C3

0 otherwise

Using AES-128, with a 128-bit key, there are N = 2128 different keys. Using Grover, we can find the right
key in O(

√
N) ≈ 264 iterations. As stated in [6], Grover’s algorithm is, while optimal, still not very powerful

and not quite parallelizable. So by [12][4], AES is still relatively safe, but upgrading the 128-bit keys is
encouraged.

4.2 Hash Functions

As suggested in section 1, we can apply Grover to find the preimages of hash functions. One can implement

it straightforward with an oracle f1 : x 7−→

{
1 H(x) = x∗

0 otherwise
, where you want a preimage of hash x∗. For a

n-bit hash function, this will take O(
√
N) = O

√
2n hashes. For finding collisions, you could use the BHT

algorithm (Brassard-Høyer-Tapp)[8], which uses Grover’s algorithm. Here you calculate and store a table of
O(

√
N1/3) random hashes and their preimages, (ri, hi). Then, apply Grover with multiple matching solutions

on oracle f2 : x 7−→

{
1 H(x) = hi, x ̸= ri

0 otherwise
. This results in a query complexity of O(

√
N

N1/3 ) = O(N1/3).

This all could be used for password cracking [3]. Password salting will prevent the attacker from attacking
multiple accounts at once, but won’t make it more difficult on one account.

4.3 Prevention

As demonstrated, Grover can do some damage on computing time in theory. But this can be prevented by
just doubling the security parameter[11]. Take for example AES-256, using Grover, it would be equivalent
to cracking AES-128 by brute force, which will take ages. Grover is nice on paper, but when looking at more
literature, its effect is not that impactful.
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